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Abstract
We calculate the spectral gap of the Markov matrix of the totally asymmetric
simple exclusion process (TASEP) on a ring of L sites with N particles. Our
derivation is simple and self-contained and extends a previous calculation that
was valid only for half-filling. We use a special property of the Bethe equations
for TASEP to reformulate them as a one-body problem. Our method is closely
related to the one used to derive exact large deviation functions of the TASEP.

PACS numbers: 05.40.−a, 05.60.−k

1. Introduction

The asymmetric simple exclusion process (ASEP) is a driven diffusive system of particles
on a lattice interacting through hard-core exclusion that serves as a basic model in various
fields ranging from protein synthesis to traffic flow (for a recent review, see Schütz (2001)).
In non-equilibrium statistical physics, the ASEP plays the role of a paradigm thanks to the
variety of phenomenological behaviour it displays and to the number of exact results it has led
to in the last decade (see, e.g., Derrida (1998)). In particular, the ASEP is an integrable model,
i.e., the Markov matrix that encodes its stochastic dynamics can be diagonalized by the Bethe
ansatz, as first noted by Dhar (1987). Thus, the spectral gap of the Markov matrix, i.e., the
difference between the two eigenvalues with largest real parts, that characterizes the longest
relaxation time of the system, can be calculated exactly: this was first done for the totally
asymmetric simple exclusion process (TASEP) at half-filling (Gwa and Spohn 1992) and later,
using a mapping into the six vertex model, Kim (1995) treated the case of the general ASEP at
arbitrary filling. In both works, the calculations are complicated though the final result for the
gap is fairly simple. In a recent work (Golinelli and Mallick 2004), we presented a concise
derivation of the TASEP gap at half-filling that circumvents most of the technical difficulties
thanks to an analytic continuation formula. However, the half-filling condition seemed to play
a crucial role in our derivation (as well as in the calculation of Gwa and Spohn). Our aim in
the present work is to show that our method can be extended to the arbitrary filling case.
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We shall study the TASEP on a periodic one-dimensional lattice with L sites (sites i and
L + i are identical). The TASEP is a discrete lattice gas model in which each lattice site i
(1 � i � L) is either empty or occupied by one particle (exclusion rule). Particles evolve
according to stochastic dynamical rules: a particle on a site i at time t jumps, in the interval
between times t and t + dt , with probability dt to the neighbouring site i + 1 if this site is
empty. As the system is periodic, the total number N of particles is conserved and the density
(or filling) is given by ρ = N/L. A configuration of the TASEP can be characterized by the
positions of the N particles on the ring (x1, x2, . . . , xN) with 1 � x1 < x2 < · · · < xN � L.
If ψt(x1, . . . , xN) represents the probability of this configuration at time t, the evolution of
ψt is given by the master equation dψt/dt = Mψt , where M is the Markov matrix. A
right eigenvector ψ is associated with the eigenvalue E of M if Mψ = Eψ . Thanks to the
Perron–Frobenius theorem, we know that the zero eigenvalue of M, which corresponds to
the stationary state, is non-degenerate and that all the other eigenvalues of M have a strictly
negative real part. In the stationary state, all configurations have the same probability, given
by N !(L − N)!/L!.

In the next section, we present the Bethe ansatz equations and restate them as a single
self-consistency equation. We then calculate the TASEP spectral gap as a function of the
density ρ in the limit of a large system size, L → ∞ (section 3).

2. The Bethe ansatz equations

The Bethe ansatz assumes that the eigenvectors ψ of M can be written in the form

ψ(x1, . . . , xN) =
∑

σ∈�N

Aσ z
x1
σ(1)z

x2
σ(2) · · · zxN

σ(N), (1)

where �N is the group of the N ! permutations of N indices. The coefficients {Aσ } and the
wave numbers {z1, . . . , zN } are complex numbers determined by the Bethe equations. In terms
of the fugacity variables Zi = 2/zi − 1, these equations become (Gwa and Spohn 1992)

(1 − Zi)
N(1 + Zi)

L−N = −2L

N∏
j=1

Zj − 1

Zj + 1
with i = 1, . . . , N. (2)

We note that the right-hand side of these equations is independent of the index i: this property
is true only for the totally asymmetric exclusion process and not for the partially asymmetric
exclusion process where the particles can also jump backwards. Introducing an auxiliary
complex variable Y, the Bethe equations (2) can be reformulated as explained below (for more
details, see Gwa and Spohn (1992), Golinelli and Mallick (2004)). Consider the one variable
polynomial equation of degree L,

(1 − Z)N(1 + Z)L−N = Y, (3)

and call (Z1, Z2, . . . , ZL) the L roots of this equation. For a given value of Y, the complex
numbers (Z1, Z2, . . . , ZL) belong to a generalized Cassini oval defined by the equation

|Z − 1|ρ |Z + 1|1−ρ = r with r = |Y |1/L, (4)

ρ being the density of the system. The topology of the Cassini oval depends on the value of r
(see figure 1). Defining

rc = 2ρρ(1 − ρ)(1−ρ), (5)

we find that for r < rc, the locus of the Z consists of two disjoint ovals, with the roots
(Z1, Z2, . . . , ZN) belonging to the oval on the right and the roots (ZN+1, ZN+2, . . . , ZL) to
the oval on the left. For r = rc, the Cassini oval is a deformed lemniscate of Bernoulli with a
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Figure 1. Roots of the equation (1 − Z)N(1 + Z)L−N = Y . Here; N = 6 and L = 15 (the filling
is ρ = 2/5) with Y = eiφ rL for φ = π/2; curves are drawn for r/rc = 0.8, 1, 1.2 (see the text for
further explanation).

double point at Zc = 1 − 2ρ. For r > rc, the oval is made of a single loop. The labelling of
the L roots (Z1, . . . , ZL) is shown in figure 1.

We now introduce a monotonic function c : {1, . . . , N} → {1, . . . , L} that selects N
fugacities among the L roots (Z1, . . . , ZL). Defining the function Ac(Y ) as

Ac(Y ) = −2L

N∏
j=1

Zc(j) − 1

Zc(j) + 1
, (6)

the Bethe equations become equivalent to the self-consistency equation

Ac(Y ) = Y. (7)

Given the choice function c and a solution Y of this equation, the Zc(j) are determined from
equation (3) and the corresponding eigenvalue Ec is given by

2Ec = −N +
N∑

j=1

Zc(j). (8)

The choice function c0(j) = j that selects the N fugacities Zi with the largest real parts
provides the ground state of the Markov matrix. The associated A function and eigenvalue are
given by

A0(Y ) = −2L

N∏
j=1

Zj − 1

Zj + 1
, (9)

2E0 = −N +
N∑

j=1

Zj . (10)

The equation A0(Y ) = Y has the unique solution Y = 0 that yields Zj = 1 for j � N and
provides the ground state with eigenvalue 0. We shall also need the following formula:

ln
A0(Y )

Y
= − L

N

N∑
j=1

ln

(
1 + Zj

2

)
. (11)

To derive this identity, we raise equation (9) to the Nth power, use equation (3) and take the
logarithm of the result; however, an additional term, which is a discrete constant (a multiple
of 2iπ/N ) appears in the calculations. This constant vanishes identically because both terms
in equation (11) become real numbers in the limit Y → 0.
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The spectral gap, given by the first excited eigenvalue, corresponds to the choice c1(j) = j

for j = 1, . . . , N − 1 and c1(N) = N + 1 (Gwa and Spohn 1992). The associated self-
consistency function and eigenvalue are given by (using equations (6), (8–10))

A1(Y ) = A0(Y )
ZN+1 − 1

ZN+1 + 1

ZN + 1

ZN − 1
, (12)

2E1 = 2E0 + (ZN+1 − ZN). (13)

Thus, from equation (12), the self-consistency equation that determines the gap reads

0 = ln
A1(Y )

Y
= ln

A0(Y )

Y
− ln

(
1 − ZN

1 + ZN

1 + ZN+1

1 − ZN+1

)
. (14)

The excitation corresponding to the choice function c(j) = j + 1 for j = 1, . . . , N − 1
and c(N) = L leads to the complex-conjugate eigenvalue Ē1. The eigenvalue E1

corresponding to the first excited state is obtained by solving the self-consistency equation
A1(Y ) = Y where A1 is defined in equation (12). We shall solve this equation in the limit
N,L → ∞, keeping ρ = N/L constant.

3. Calculation of the first excited state

As in Golinelli and Mallick (2004), we start with the Taylor expansions of A0(Y ) and E0(Y )

in the vicinity of Y = 0 and valid for arbitrary values of N and L. In our previous work, we
considered only the half-filling case, L = 2N , for which the polynomial equation (3) reduces
to (1−Z2)N = Y and can be solved explicitly in terms of Y yielding the Taylor series of A0 and
E0. An explicit solution of equation (3) cannot, however, be obtained for an arbitrary density ρ.
This major technical difficulty can be circumvented thanks to a contour integral representation
similar to that used for calculating large deviation functions (Derrida and Lebowitz 1998,
Derrida and Appert 1999, Derrida and Evans 1999).

When Y → 0, the N roots (Z1, . . . , ZN) of equation (3) with the largest real parts converge
to +1, whereas the L − N remaining roots converge to −1. We now consider a positively
oriented contour γ that encircles +1 such that for sufficiently small values of Y the roots
(Z1, . . . , ZN) lie inside γ and (ZN+1, . . . , ZL) are outside γ . Let h(Z) be a function that is
analytic in a domain containing the contour γ . We also define

P(Z) = (1 − Z)N(1 + Z)L−N. (15)

Because, by definition, the Zj are the zeros of P(Z) = Y , we obtain, from the residues
theorem,

N∑
m=1

h(Zm) = 1

2iπ

∮
γ

P ′(Z)

P (Z) − Y
h(Z) dZ. (16)

Expanding the denominator in the contour integral for small values of Y (thanks to the formula
(P − Y )−1 = ∑∞

k=0 Y k/P k+1 valid for |Y | < |P |), we obtain the Taylor expansion
N∑

m=1

h(Zm) = 1

2iπ

∞∑
k=0

Y k

∮
γ

P ′(Z)

P k+1(Z)
h(Z) dZ

= 1

2iπ

∮
γ

P ′(Z)

P (Z)
h(Z) dZ +

1

2iπ

∞∑
k=1

Y k

k

∮
γ

h′(Z)

P k(Z)
dZ

= Nh(1) +
1

2iπ

∞∑
k=1

Y k

k

∮
γ

h′(Z) dZ

(1 − Z)kN(1 + Z)k(L−N)
. (17)



TASEP spectral gap 1423

The second equality is derived by integrating by parts the terms with k � 1; the term Nh(1) in
the third equality is obtained from the residues theorem. We shall need the following identity,
valid for any positive integers P and Q:

1

2iπ

∮
γ

1

(1 − Z)P (1 + Z)Q
dZ = −21−P−Q

(
P + Q − 2

P − 1

)
. (18)

Using equation (17) with h(Z) = ln
(

1+Z
2

)
, we obtain from equations (11) and (18)

ln
A0(Y )

Y
=

∞∑
k=1

(
kL

kN

)
Y k

k2kL
. (19)

Similarly, using equation (17) with h(Z) = Z − 1, we obtain from equations (10) and (18)

2E0 = −
∞∑

k=1

(
kL − 2
kN − 1

)
Y k

k2kL−1
. (20)

In the limit L → ∞ and with ρ fixed, we obtain from the Stirling formula

ln
A0(Y )

Y
→ 1√

2πρ(1 − ρ)L
Li3/2

(
Y

rL
c

)
, (21)

where rc was defined in equation (5) and the polylogarithm function of index s, Lis , is given
by

Lis(z) = z

�(s)

∫ ∞

0

t s−1 dt

et − z
=

∞∑
k=1

zk

ks
. (22)

The function Lis is defined by the first equality on the whole complex plane with a branch cut
along the real semi-axis [1, +∞); the second equality is valid only for |z| < 1.

The limit found in equation (21) suggests that Y can be parametrized as follows:

Y = −rL
c euπ , (23)

u being a complex number with −1 � Im(u) < 1 and which remains finite in the limit L → ∞.
Thus, |Y |1/L � rc and roots of the type Zk,ZL−k and ZN±k where k is a fixed positive integer
are close to the lemniscate double point Zc = 1 − 2ρ. Writing Z = 1 − 2ρ + 2ξ , with
ξ � 1, and taking the logarithm of equation (2) we obtain

(1 − ρ) ln

(
1 +

ξ

1 − ρ

)
+ ρ ln

(
1 − ξ

ρ

)
= π

u + i(2k − 1)

L
. (24)

For fixed k, the values k � 0 lead to ZN−k and ZL−k , and k � 1 lead to Zk and ZN+k .
Neglecting terms of order O(L−3/2), we have

ZN = 1 − 2ρ + 2i

√
2πρ(1 − ρ)

L
(u − i)1/2 +

4π

3

1 − 2ρ

L
(u − i) + · · · (25)

ZN+1 = 1 − 2ρ + 2i

√
2πρ(1 − ρ)

L
(u + i)1/2 +

4π

3

1 − 2ρ

L
(u + i) + · · · . (26)

Substituting equations (21), (25) and (26) into equation (14), we obtain the large L limit of the
Bethe equations for the gap which, at the leading order, reads

Li3/2(−euπ ) = 2iπ [(u + i)1/2 − (u − i)1/2]. (27)

This equation is the same as that obtained in Golinelli and Mallick (2004) and its solution is
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given by

u = 1.119 068 802 804 474 . . . . (28)

We can now calculate the eigenvalue corresponding to the first excited state. From
equations (13), (14) and (20), we obtain

2E1 = (2E0 + ZN+1 − ZN) + 2ρ(1 − ρ) ln
A1(Y )

Y

= −
∞∑

k=1

ρ(1 − ρ)
(
kL

kN

)
Y k

k(kL − 1)2kL−1
+ (ZN+1 − ZN) − 2ρ(1 − ρ) ln

(1 − ZN)(1 + ZN+1)

(1 + ZN)(1 − ZN+1)
. (29)

The large L limit of this expression is found by using the Stirling formula, the expansions
(25) and (26), and the parametrization of Y given by equation (23). We thus obtain

2E1 = − 1

L3/2

√
2ρ(1 − ρ)

π

(
Li5/2(−euπ ) − 4π2

3
i[(u + i)3/2 − (u − i)3/2]

)
+

4iπ

L
(1 − 2ρ),

(30)

where u is the solution of equation (27), its numerical value being given in equation (28).
Comparing with the value E1,ρ=1/2 obtained at half-filling we conclude that

E1 = 2
√

ρ(1 − ρ)E1,ρ=1/2 +
2iπ

L
(1 − 2ρ). (31)

This equation agrees with the one derived by Kim (1995). We note that this eigenvalue has a
non-vanishing imaginary part when the density is different from one-half.

4. Conclusion

The asymmetric exclusion process can be mapped into the six-vertex model and is thus an
integrable model that can be solved by the Bethe ansatz. Kim (1995) has used this technique
to calculate gaps and crossover functions for the generic asymmetric exclusion process but the
calculations are very complicated. However, for the totally asymmetric exclusion process the
Bethe equations can be reduced to a single polynomial equation and their analysis becomes
much simpler as shown in the present work. We have calculated the gap of the TASEP
for arbitrary filling. Our method is closely related to that used to calculate large deviation
functions (see Derrida (1998) for a review) and leads to derivations that are far simpler than
the ones presented in previous works. This technique can be generalized to calculate any finite
excitation close to the ground state of the system.
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